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UNIT-I 

 
0.1 Topological Spaces 
 

Definition 0.1.1. A topology on a set X is a collection J of subsets of X having 
the following properties: 

(i)∅ and X are in J . 

(ii) The union of the elements of any subcollection of J is in J . 

(iii) The intersection of the elements of any finite subcollection of J is in J . 

A set X for which a topology J has been specified is called a topological space. 

If X is a topological space with topology J , we say that a subset U of X is an 

open set of X. If U belongs to the collection J . 
If X is any set, the collection of all subsets of X is a topology on X, it is called 
the discrete topology. The collection consisting of X and ∅ only is also a topology 
on X, it is called the indiscrete topology or the trivial topology. 

Let X be a set. Let Jf be a collection of all subsets U of X such that X−U either 

is finite or is all of X. Then Jf is a topology on X, called the finite complement 
topology. 

Result 0.1.2. Jf is a finite complement topology. 
Proof. Since X − X = ∅ and X − ∅ = X, either is finite or is all of X. 

Both X and ∅ are in Jf . 

To show that SUα is in Jf . 
X − SUα = T(X − Uα). 
Since X − Uα is finite then T(X − Uα) is finite. 
Then (X − SUα) is finite. 

Therefore, SUα is in Jf . 

If U1,U2, · · · ,Un or non empty elements of Jf . 

To show that TUi is in Jf . 
Now we know that X − 
n 

Ti=1 

Ui = 
n 

Si=1 

(X − Ui). 
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since (X − Ui) is finite then 
n 

Si=1 

(X − Ui) is finite. 

Then TUα is in Jf . 

Therefore, Jf is a finite complement topology.  

Definition 0.1.3. Suppose that J and J ′ are two topologies on a given set X. 

If J ′ ⊃ J , we say that J ′ is finer than J ; if J ′ properly contains J , we say that 

J ′ is strictly finer than J . We also say that J is coarser than J ′ , or strictly 

coarser, in these two respective situations. We say J is comparable with J ′ if 

either J ′ ⊃ J or J ⊃ J ′ . 

 
0.2 Basis for a Topology 
 
Definition 0.2.1. If X is a set, a basis for a topology on X is a collection B of 
subsets of X (called basis elements) such that 

(i) For each x ∈ X, there is at least one basis element B containing x. 
(ii) If x belongs to the intersection of two basis elements B1 and B2, then there 

is a basis element B3 containing x such that B3 ⊂ B1 ∩ B2. 

If B satisfies these two conditions, then we define the topology J generated by 
B as follows: A subset U of X is said to be open in X (that is, to be an element 

of J ) if for each x ∈ U, there is a basis element B ∈ B such that x ∈ B and 

B ⊂ U. Note that each basis element is itself an element of J . 

Lemma 0.2.2. Let X be a set; let B be a basis for a topology J on X. Then J 
equals the collection of all unions of elements of B. 

Proof. Let X be a set and B be the basis for the topology J on X. 

The collection of elements of B are also elements of J because J is a topology, 

their union is in J . 

Conversely, given U ∈ J , choose for each x ∈ U an element Bx of B such that 

x ∈ Bx ⊂ U. Then U = Sx∈U Bx, so U equals a union of elements of B.  
Lemma 0.2.3. Let X be a topological space. Suppose that C is a collection of 
open sets of X such that for each open set U of X and each x in U, there is an 

element C of C such that x ∈ C ⊂ U. Then C is a basis for the topology of X. 
Proof. First we prove that C is a basis. 
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Given x ∈ X, since X is an open set, by hypothesis an element C of C such that 

x ∈ C ⊂ X. 

Let x ∈ C1 ∩ C2 where C1 and C2 are the elements of C . 

Since C1 and C2 are open, C1 ∩ C2 are open. 

By hyphothesis, there exists an element C3 of C such that x ∈ C3 ⊂ C1 ∩ C2. 
Therefore, C is a basis. 

Let J be the topology on X. 

Let J ′ denote the topology generated by C . 

To prove that J ′ = J . 

By 0.2.4, J ′ is finer than J . 

Conversely, since each element of C is an element of J , the union of elements of 

C is also in J . 

By 0.2.2, J ′ contains J . 

Therefore, J ′ = J . 
Therefore, C is a basis for the topology of X.  
Lemma 0.2.4. Let B and B 

′ be bases for the topologies J and J ′ , respectively, 
on X. Then the following are equivalent: 

(i) J ′ is finer than J . 

(ii) For each x ∈ X and each basis element B ∈ B containing x, there is a basis 

element B′ ∈ B 

′ such that x ∈ B′ ⊂ B. 

Proof. To prove (ii)⇒(i) 

Given an element U ∈ J . 

To show that U ∈ J ′ . 

Let x ∈ U. SinceB generates J , there is an element B ∈ B such that x ∈ B ⊂ U. 

By (ii), there exists an element B′ ∈ B 

′ such that x ∈ B′ ⊂ B, then x ∈ B′ ⊂ U. 

By definition of basis for the topology, U ∈ J ′ . 

To prove (i)⇒(ii) 

Given x ∈ X and B ∈ B with x ∈ B. 

Now B ∈ J , by definition and J ⊂ J ′ by (i); therefore B ∈ J ′ . 
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Since J ′ is generated by B 

′ , there is an element B′ ∈ B 

′ such that x ∈ B′ ⊂ B. 
Definition 0.2.5. If B is the collection of all open intervals in the real line, 

(a, b) = {x|a < x < b}, 
the topology generated by B is called the standard topology on the real line. 
If B 
′ is the collection of all half-open intervals of the form 

[a, b) = {x|a ≤ x < b}, 
where a < b, the topology generated by B 
′ is called the lower limit topology on 
R. When R is given the lower limit topology, we denote it by Rl. Finally let K 

denote the set of all numbers of the form 1/n, for n ∈ Z+, and let B 
′′ be the 
collection of all open intervals (a, b), along with all sets of the form (a, b) − K. 
The topology generated by B 
′′ will be called the K-topology on R. When R is 
given this topology, we denote it by Rk. 
Lemma 0.2.6. The topologies of Rl and Rk are strictly finer than three standard 
topology on R, but are not comparable with one another. 

Proof. Let J ,J ′ ,J ′′ be the topologies of R,Rl,Rk,respectively. 

Given a basis element (a, b) for J and a point x of (a, b), the basis element [x, b) 

for J ′ contains x and lies in (a, b). On the otherhand,given the basis element 

[x, d) for J ′ , there is no open interval (a, b) that contains x and lies in [x, d). 

Thus J ′ is strictly finer than J . 

Given a basis element (a, b) for J and a point x of (a, b), this same interval is a 

basis element for J ′′ that contains x. On the otherhand, given the basis element 

B = (−1, 1) − K for J ′′ and the point O of B, there is no open interval that 
contains O and lies in B. 

By definition of comparable, J ′ and J ′′ are not comparable with one another. 2 

Definition 0.2.7. A subbasis S for a topology on X is a collection of subsets of 

X whose union equals X. The topology generated by the subbasis S is defined to 

be the collection J of all unions of finite intersections of elements of S. 
 

0.3 The Order Topology 
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Definition 0.3.1. If X is a simply ordered set, there is a standard topology for 
X, defined using the order relation. It is called the order topology. 
Suppose that X is a set having a simple order relation <. Given elements a and 
b of X such that a < b, there are four subsets of X that are called the intervals 
determined by a and b. They are the following: 

(a, b) = {x|a < x < b}, 

(a, b] = {x|a < x ≤ b}, 

[a, b) = {x|a ≤ x < b}, 

[a, b] = {x|a ≤ x ≤ b}. 
A set of the first type is called an open interval in X, a set of the last type is 
called a closed interval in X, and sets of the second and third types are called 
half-open intervals. 
Definition 0.3.2. Let X be a set with a simple order relation; assume X has 
more than one element. Let B be the collection of all sets of the following types: 
(1) All open intervals (a, b) in X. 
(2) All intervals of the form [a0, b), where a0 is the smallest element(if any) of X. 
(3) All intervals of the form (a, b0], where b0 is the largest element(if any) of X. 
The collection B is a basis for a topology on X, which is called the order topology. 
Definition 0.3.3. If X is an ordered set, and a is an element of X, there are 
four subsets of X that are called rays determined by a. They are the following: 

(a,+∞) = {x|x > a}, 

(−∞, a) = {x|x < a}, 

[a,+∞) = {x|x ≥ a}, 

(−∞, a] = {x|x ≤ a}. 
Sets of the first types are called open rays, and sets of the last two types are called 
closed rays. 

 
 

0.5 The Subspace Topology 
 

Definition 0.5.1. Let X be a topological space with topology J . If Y is a subset 
of X, the collection 

JY = {Y ∩ U|U ∈ J } 
is a topology on Y , called the subspace topology. With this topology, Y is called 
a subspace of X; its open sets consist of all intersections of open sets of X with 
Y . 
Lemma 0.5.2. If B is a basis for the topology of X then the collection 
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BY = {B ∩ Y |B ∈ B} 
is a basis for the subspace topology on Y . 
Proof. Consider U is open in X. Given B is a basis for the topology of X. We 

can choose an element B of B such that y ∈ B ⊂ U. 

Then y ∈ B ∩ Y ⊂ U ∩ Y , since BY = {B ∩ Y |B ∈ B}. 
By 0.2.3 or definition of basis, BY is a basis for the subspace topology on Y .  
Definition 0.5.3. If Y is a subspace of X, we say that a set U is open in Y (or 
open relative to Y ) if it belongs to the topology of Y ; this implies in particular 
that it is a subset of Y . We say that U is open in X if it belongs to the topology 
of X. 
Lemma 0.5.4. Let Y be a subspace of X. If U is open in Y and Y is open in 
X, then U is open in X. 
Proof. Given U is open in Y and Y is open in X. 

Since U is open in Y and Y is a subspace of X then U = Y ∩ V where V is open 
in X. 

Since Y and V are both open in X, Y ∩ V is open in X. 
Therefore, U is open in X. 2 
Theorem 0.5.5. If A is a subspace of X and B is a subspace of Y , then the 

product topology on A×B is the same as the topology A×B inherits as a subspace 

of X × Y . 

Proof. The set U × V is the general basis element for X × Y , where U is open 
in X and V is open in Y . 

Then (U × V ) ∩ (A × B) is the general basis element for the subspace topology 

on A × B. Now 

(U × V ) ∩ (A × B) = (U ∩ A) × (V ∩ B). 

Since U ∩ A and V ∩ B are the general open sets for the subspace topologies on 

A andB respectively, the set (U ∩ A) × (V ∩ B) is the general basis element for 

the product on A × B. 

The bases for the subspace topology on A × B and for the product topology on 

A × B are the same. Hence the topologies are the same.  
Theorem 0.5.6. Let X be an ordered set in the order topology; let Y be a subset 
of X that is convex in X. Then the order topology on Y is the same as the 
topology Y inherits as a subspace of X. 

Proof. Consider the ray (a,+∞) in X. 

If a ∈ Y , then (a,+∞) ∩ Y = {x|x ∈ Y and x > a}; this is an open ray of the 
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ordered set Y . 

If a /∈ Y , then a is either a lower bound on Y or an upper bound on Y , since Y 
is convex. 

If a ∈ Y , the set (a,+∞) ∩ Y equals all of Y . If a /∈ Y , it is empty. 

Similarly the intersection of the ray (−∞, a) ∩ Y is either an open ray of Y , or 
Y itself or empty. 

Since the sets (a,+∞) ∩ Y and (−∞, a) ∩ Y form a subbasis for the subspace 
topology on Y and since each is open in the order topology, the order topology 
11 
contains the subspace topology. 

Conversely, Y equals the intersection of X with Y , that is X ∩ Y = Y . So 
it is open in the subspace topology on Y . The order topology is contained in 
the subspace topology. Therefore, the order topology and subspace topology are 
same.  
 

0.6 Closed Sets and Limit Points 
 
Definition 0.6.1. A subset A of a topological space X is said to be closed if the 
set X − A is open. 
Theorem 0.6.2. Let X be a topological space. Then the following conditions 
hold: 
(1) ∅ and X are closed. 
(2) Arbitrary intersections of closed sets are closed. 
(3) Finite unions of closed sets are closed. 
Proof. (1) ∅ and X are closed because they are the complements of the open 
set X and ∅ respectively. 

(2) Consider a collection of closed sets {Aα}α∈J , we apply De Morgan’s law, 
X − T α∈J 

Aα = S α∈J 

(X − Aα) 
Since the sets X −Aα are open. By definition of closed sets, the right side of this 
equation represents an arbitrary union of open sets and is thus open. Therefore, 
TAα is closed. 

(3) Similarly, if Ai is closed for i = 1, 2, · · · , n. Consider the equation 
X − 
n 

Si=1 

Ai = 
n 

Ti=1 
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(X − Ai) 
The set on the right side of this equation is a finte intersection of open sets and 
is therefore open. Hence SAi is closed.  
Definition 0.6.3. If Y is a subspace of X, we say that a set A is closed in Y 
if A is a subset of Y and if A is closed in the subspace topology of Y (that is, if 
Y − A is open in Y ). 
Theorem 0.6.4. Let Y be a subspace of X. Then a set A is closed in Y if and 
only if it equals the intersection of a closed set of X with Y . 

Proof. Assume that A = C ∩Y , where C is closed in X. Then X−C is open in 

X, so that (X −C)∩Y is open in Y . By the definition of the subspace topology, 

but (X − C) ∩ Y = Y − A. Hence Y − A is open in Y , so that A is closed in Y . 
Conversely, assume that A is closed in Y . Then Y −A is open in Y . By definition, 
it equals the intersection of an open set U of X with Y . The set X −U is closed 

in X and A = Y ∩ (X −U). Hence A equals the intersection of a closed set of X 
with Y .  
Theorem 0.6.5. Let Y be a subspace of X. If A is closed in Y and Y is closed 
in X, then A is closed in X. 
Proof. Given A is closed in Y and Y is closed in X. Since A is closed in Y and 
Y is a subspace of X. 

Let A = Y ∩ (X − B) where X − B is open in X. Then B is closed in X. Since 

Y and B are both closed in X. Then Y ∩ (X − B) is closed in X. Therefore, A 
is closed in X.  
Definition 0.6.6. Given a subset A of a topological space X, the interior of A 
is defined as the union of all open sets contained in A, and the closure of A is 
defined as the intersection of all closed sets containing A. 
The interior of A is denoted by Int A and the closure of A is denoted by Cl A or 
by A. Obviously Int A is an open set and A is a closed set; furthermore, 

Int A ⊂ A ⊂ A. 
If A is open, A=Int A; while if A is closed, A = A. 
Theorem 0.6.7. Let Y be a subspace of X; let A be a subset of Y ; let A denote 

the closure of A in X. Then the closure of A in Y equals A ∩ Y . 

Proof. Let B denote the closure of A in Y . The set A is closed in X, so A∩Y is 

closed in Y . By 0.6.4, since A∩Y contains A and since B is closed. By definition 
B equals the intersection of all closed subsets of Y containing A, we must have 

B ∩ (A ∩ Y ). 

On the otherhand, we know that B is closed in Y . By 0.6.4, B = C ∩ Y for 
some set C closed in X. Then C is a closed set of X containing A; because 
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A is the intersection of all such closed sets, we conclude that A ⊂ C. Then 

(A ∩ Y ) ⊂ (C ∩ Y ) = B. Therefore, B = A ∩ Y . 2 
Theorem 0.6.8. Let A be a subset of the topological space X. 

(a) Then x ∈ A if and only if every open set U containing x intersects A. 

(b) Supposing the topology of X is given by a basis, then x ∈ A if and only if 
every basis element B containing x intersects A. 
Proof. (a)We prove this theorem by contrapositive method. 
If x is not in A, since A is closed, A = A. The set U = X − A is an open set 
containing x that does not intersect A. 
Conversely, if there exists an open set U containing x which does not intersect 
A. Then X − U is a closed set containing A. 

By definition of the closure A, the set X − U must contain A, since x ∈ U. 
Therefore, x cannot be in A. 
(b) Write the definition of topology generated by basis,if every open set x intersects 
A, so does every basis element B containing x, because B is an open set. 
Conversely, if every basis element containing x intersects A, so does every open 
set U containing x, because U contains a basis element that contains x.  
Definition 0.6.9. If A is a subset of the topological space X and if x is a point 
of X, we say that x is a limit point(or ”cluster point” or ”point of accumulation”) 
of A if every neighborhood of x intersects A in some point other than x itself. 

Said differently, x is a limit point of A if it belongs to the closure of A − {x}. 
The point x may lie in A or not; for this definition it does not matter. 
Theorem 0.6.10. Let A be a subset of the topological space X; let A′ be the set 

of all limit points of A. Then A = A ∪ A′ . 
Proof. Let A′ be the set of all limit points of A. 

If x ∈ A′ , every neighborhood of x intersects of A in a point different from x. By 

0.6.8, x ∈ A. Then A′ ⊂ A. 

By definition of closure, A ⊂ A. Therefore, A ∪ A′ ⊂ A. 

Conversely, let x ∈ A 

To show that A ⊂ A ∪ A′ 

If x ∈ A then it is trivially true for x ∈ A ∪ A′ . 

Suppose x /∈ A. Since x ∈ A, by 0.6.8, we know that every neighborhood U of x 

intersect A, because x /∈ A, the set U must intersect A in a point different from 

x. Then x ∈ A′ so that x ∈ A ∪ A′ . 

Then A ⊂ A ∪ A′ . 
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Therefore, A = A ∪ A′ .  
Corollary 0.6.11. A subset of a topological space is closed if and only if it 
contains all its limit points. 

Proof. The set A is closed iff A = A. By 0.6.10, A′ ⊂ A.  
Definition 0.6.12. A topological space X is called a Hausdroff space if for each 
pair x1, x2 of distinct points of X, there exist neighborhoods U1 and U2 of x1 and 
x2 respectively, that are disjoint. 
Theorem 0.6.13. Every finite point set in a Hausdorff space X is closed. 

Proof. It is enough to show that every one-point set {x0} is closed. 
If x is a point of X different from x0, then x and x0 have disjoint neighborhoods 
U and V respectively. 

Since U does not intersect {x0}, the point x cannot belong to the closure of the 

set {x0}. 

As a result, the closure of the set {x0} is {x0} itself. 

Therefore, {x0} is closed.  
Note: The condition that finite point sets be closed is in fact weaker than 
the Hausdroff condition. For example, the real line R in the finite complement 
topology is not a Hausdorff space, but it is a space in which finite point sets are 
closed. The condition that finite point sets be closed has been given a name of 
its own; it is called the T1 axiom. 
Theorem 0.6.14. Let X be a space satisfying the T1 axiom; let A be a subset of 
X. Then the point x is a limit point of A if and only if every neighborhood of x 
contains infinitely many points of A. 
Proof. If every neighborhood of x intersects A in infinitely many points, it certainly 
intersects A in some point other than x itself, so that x is a limit point of 
A. 
Conversely, suppose that x is a limit point of A and suppose some neighborhood 
U of x intersects A in only finitely many points. 

Let {x1, x2, · · · , xm} be the points of U ∩ (A − {x}). 

The set X − {x1, x2, · · · , xm} is an open set of X, since the finite point set 

{x1, x2, · · · , xm} is closed then 

U ∩ (X − {x1, x2, · · · , xm}) 

is a neighborhood of x that does not intersects the set A−{x}. Since {x1, x2, · · · , xm} 

be points of U ∩ (A − {x}). 
This contradicts the assumption that x is a limit point of A.  
Theorem 0.6.15. If X is a Hausdorff space, then a sequence of points of X 
converges to at most one point of X. 



13 
 

Proof. Suppose that xn is a sequence of points of X that converges to x. 

If y 6= x, let U and V be disjoint neighborhoods of x and y respectively. Since U 
contains xn for all but finitely many values of n, the set V cannot contains xn. 
Therefore,xn cannot converge. 
If the sequence xn of points of the Hausdorff space X converges to the point x of 

X, we often write xn → x. 
Therefore, x is the limit of the sequence xn.  
Theorem 0.6.16. Every simply ordered set is a Hausdorff space in the order 
topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace 
of a Hausdorff space is a Hausdorff space. 
Proof. Let X and Y be two Hausdorff spaces. 

To prove X × Y is Hausdorff. 

Let x1 ×y1 and x2 ×y2 be two distinct points of X ×Y . Then x1, x2 are distinct 
points of X and X is a Hausdorff space, there exists neighborhood U1 and U2 of 

x1 and x2 such that U1 ∩ U2 = ∅ 
Similarly, y1, y2 are distinct point of Y and Y is a Hausdorff space, there exists 

neighborhood V1 and V2 of y1 and y2 such that V1 ∩ V2 = ∅. 

Then clearly U1 × V1 and U2 × V2 are open sets in X × Y containing x1 × y1 and 

x2 × y2 such that (U1 × V1) ∩ (U2 × V2) = ∅. 

Therefore, X × Y is a Hausdorff space. 
Let X be a Hausdorff space and let Y be a subspace. 
To prove Y is a Hausdorff space. 
Let y1, y2 be two distinct points of Y and Y containing X. Then y1 and y2 are 
distinct points in X and X is Hausdorff there exists neighborhood U1 and U2 of y1 

and y2 such that U1∩U2 = ∅. Then U1∩Y and U2∩Y are distinct neighborhoods 
of y1 and y2 in Y . 
Therefore, Y is a Hausdorff space.  
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UNIT-II 
 

0.4 The product Topology on X × Y 
 
Definition 0.4.1. Let X and Y be topological spaces. The product topology on 

X × Y is the topology having as basis the collection B of all sets of the form 

U × V , where U is an open subset of X and V is an open subset of Y . 
Theorem 0.4.2. If B is a basis for the topology of X and C is a basis for the 
topology of Y , then the collection 

D = {B × C|B ∈ B and C ∈ C } 

is a basis for the topology of X × Y . 

Proof. We apply 0.2.3. Given an open set W of X ×Y and a point x×y of W, 

by definition of the product topology there is a basis element U × V such that 

x × y ∈ U × V ⊂ W. 
Because B and C are bases for X and Y respectively, we can choose an element 

B of B such that x ∈ B ⊂ U and an element C of C such that y ∈ C ⊂ V . Then 

x × y ∈ B × C ⊂ W. 

Therefore, D is a basis for X × Y .  

Definition 0.4.3. Let π1 : X × Y → X be defined by the equation 
π1(x, y) = x; 

let π2 : X × Y → Y be defined by the equation 
π2(x, y) = y. 

The maps π1 and π2 are called the projections of X ×Y onto its first and second 
factors, respectively. 
We use the word ”onto” because π1 and π2 are surjective. 
Note If U is an open subset of X, then the set π−1 

1 (U) is precisely the set 

U × Y , which is open in X × Y . Similarly, if V is open in Y , then 
π−1 

2 (V ) = X × V , 

which is also open in X ×Y . The intersection of these two sets is the set U ×V . 
Theorem 0.4.4. The collection 

S = {π−1 

1 (U)|U open in X} ∪ {π−1 



15 
 

2 (V )|V open in Y } 

is a subbasis for the product topology on X × Y . 

Proof. Let J denote the product topology on X × Y . 

Let J ′ be the topology generated by S. Because every element of S belongs to 

J . 

By definition of subbasis, arbitrary unions of finite intersections of elements of S. 

Thus J ′ ⊂ J . 
On the otherhand, 

U × V = π−1 

1 (U) ∩ π−1 

2 (V ) 
where π−1 

1 (U) is open in X and π−1 

2 (V ) is open in Y . 

Since U × V ∈ J , we have U × V = π−1 

1 (U) ∩ π−1 

2 (V ). U × V ∈ J ′ . Therefore, 

J ⊂ J ′ .  

 
0.7 Continuity of a Function 
 

Definition 0.7.1. Let X and Y be topological spaces. A function f : X → Y is 
said to be continuous if for each open subset V of Y , the set f−1(V ) is an open 
subset of X. 

f−1(V ) is the set of all points x of X for which f(x) ∈ V ; it is empty if V does 
not intersect the image set f(X) of f. 

Theorem 0.7.2. Let X and Y be the topological spaces.Let f : X → Y . Then 
the following are equivalent: 
(a) f is continuous. 

(b) For every subset of X, one has f(A) ⊂ f(A). 
(c) For every closed set B of Y , a set f−1(B) is closed in X. 

(d) For each x ∈ X and each neighborhood V of f(x) there is a neighborhood U 

of x such that f(U) ⊂ V . 
If the condition in equation (d) holds for the point x of X such that f is continuous 
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at the point x. 

Proof. To show that (a)⇒ (b) ⇒ (c) ⇒(a) and (a)⇒ (d), (d) ⇒ (a). 

First we show that (a)⇒(b) 

Assume f is continuous. Let A be a subset of X. We have to show that f(A) ⊂ 
f(A). 

If x ∈ A then f(x) ∈ f(A). Since f is continuous, f−1(V ) is an open set of X 
containing x, where V be a neighborhood of f(x). 
Now f−1(V ) must intersect A in some point y. Then V intersects f(A) in the 

point f(y), f(x) ∈ f(A). Therefore, f(A) ⊂ f(A). 

To show that (b)⇒(C) 
Let B be closed in Y . Let A = f−1(B). 
To prove that A is closed in X. 
ie, To prove that A = A. 

By elementary set theory, we have f(A) = f(f−1(B)) ⊂ B 

If x ∈ A, then f(x) ∈ f(A) ⊂ f(A) ⊂ B = B. 

Then x ∈ f−1(B) ⇒ x ∈ A. Therefore, A ⊂ A. 

Since A ⊂ A, therefore, A = A. 

To show that (c)⇒(a) 
Let V be open in Y . The set B = Y − V . 
Then f−1(B) = f−1(Y − V ) = f−1(Y ) − f−1(V ) = X − f−1(V ) 
Now B is a closed set of Y then f−1(B) is closed in X(By hypothesis). 
Then f−1(V ) is open in X. 
Therefore, f is continuous. 

To show that (a)⇒(d) 

Let x ∈ X. Let V be a neighborhood of f(x). Then the set U = f−1(V ) is a 
neighborhood of x. 

Therefore, f(U) ⊂ V . 

To show that (d)⇒(a) 

Let V be open in Y . Let x ∈ f−1(V ). Then f(x) ∈ V . 

Then by hypothesis, there is a neighborhood Ux of x such that f(Ux) ⊂ V . Then 

Ux ⊂ f−1(V ). 
Now f−1(V ) can be written as the union of the open sets Ux. 
Thus f−1(V ) is open. 
Therefore, f is continuous.  

Definition 0.7.3. Let X and Y be topological spaces. Let f : X → Y be a 
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bijection. If both the function x and the inverse function f−1(V ) are continuous 
then f is called homeomorphism. 
Theorem 0.7.4. (Rules for constructing continuous functions). Let X, Y and Z 
be topological spaces. 

(a) (constant function) If f : X → Y maps all of X into the single point y0 of 
Y , then f is continuous. 

(b) (Inclusion) If A is a subspace of X, the inclusion function j : A → X is 
continuous. 

(c) (Composites) If f : X → Y and g : Y → Z are continuous, then the map 

g ◦ f : X → Z is continuous. 

(d) (Restricting the domain) If f : X → Y is a continuous. Let A is a subspace 

of X. Then the restricted function f/A : A → Y is continuous. 

(e) (Restricting or expanding the range) Let f : X → Y be a continuous. If Z 

is a subspace of Y containing the image set f(X), then the function g : X → Z 
obtained by restricting the range of f is continuous. 

If Z is a space having Y as a subspace then the function h : X → Z obtained by 
expanding the range of f is continuous. 

(f ) (Local formulation of continuity) The map f : X → Y is continuous, if X 
can be written as the union of open set Uα such that f/Uα is continuous for each 
α. 

Proof. (a) Let f(x) = y0, x ∈ X, y0 ∈ Y . 
Let V be open in Y . 

If y0 ∈ Y , the set f−1(V ) = X. 

The set f−1(V ) be open in X, y0 ⊂ V 
Therefore, f is continuous. 

(b) Let A be a subspace of X. To prove j : A → X is continuous. 

If U is open in X then j−1(U) = U ∩ A which is open in A by definition of 
subspace topology. 
Then j−1(U) is open in A. 
Therefore, j is continuous. 
(c) Since f and g be continuous. We have the following conditions: 
If U is open in Z then g−1(U) is open in Y and f−1(g−1(U)) is open in X. But 
f−1(g−1(U)) = (g ◦ f)−1(U). 

Then (g ◦ f)−1(U) is open in X. Therefore, g ◦ f : X → Z is continuous. 

(d)Let f : X → Y be continuous. Let A be a subspace of X. 
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To prove f/A : A → Y is continuous. 

Since by (b), we have the inclusion map j : A → X is continuous. Also we have 

f : X → Y is continuous. 

Therefore, the restricted function f/A : A → Y is continuous by (c). 
ie, f/A each equals the composite of the inclusion map j. 

(e) Let f : X → Y is continuous. 

Given Z is a subspace of Y containing the image set f(X). ie,f(X) ⊂ Z ⊂ Y 

To prove the function g : X → Z obtained from f is continuous. 

Let B be open in Z. Since Z is a subspace of Y,B = Z ∩ U for some open set U 
of Y . 
Since B is open in Z, g−1(B) is open in X and since U is open in Y , f−1(U) is 
open in X 
Then f−1(U) = g−1(B) 

Therefore, g : X → Z obtained from f is continuous. 

If Z is a space having Y as a subspace. To prove the function h : X → Z is 
continuous. 

This is obtained by the composition of the map f : X → Y and the inclusion 

map j : Y → Z. 

Since Y is a subspace of Z, inclusion map j : Y → Z is continuous by (b). 

Therefore, the function h : X → Z is continuous. 
(f) Given X can be written as the union of open sets Uα such that f/Uα is 
continuous for each α. 

To prove f : X → Y is continuous. 
Let V be open in Y . 

Now f(x) ∈ V, x ∈ X. Since Uα is open in X containing x. Then f−1(V ) ∩ Uα is 
open in X. 
Since f/Uα is continuous; Uα is open in X, (f/Uα)−1(V ) is open in X. 
Then f−1(V ) is open in X. 
Therefore, f is continuous.  

Theorem 0.7.5. (The Pasting Lemma) Let X = A ∪ B, where A and B are 

closed in X. Let f : A → Y and g : B → Y,B is continuous. If f(x) = g(x) for 

every x ∈ A∩B, then f and g combine to give a continuous function h : X → Y 

defined by setting h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B. 

Proof. Let X = A ∪ B where A and B are closed in X. 
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Since f : A → Y is continuous, f−1(C) is closed in A, where C is closed in Y . 

Since g : B → Y is continuous, g−1(C) is closed in B where C is closed in Y . 

If x ∈ A, h(x) = f(x) and if x ∈ B, h(x) = g(x). 

If x ∈ A ∪ B, h(x) = f(x) ∪ g(x). 

Now h−1(C) = f−1(C) ∪ g−1(C). 

Then h−1(C) is closed in A ∪ B. 
Then h−1(C) is closed in X. 
Therefore, h is continuous.  

Theorem 0.7.6. (Maps into products) Let f : A → X ×Y be given by the equation 
f(a) = (f1(a), f2(a)). 
Then f is continuous if and only if the functions 

f1 : A → X and f2 : A → Y 
are continuous. 
The maps f1 and f2 are called the coordinate functions of f. 

Proof. Let π1 : X × Y → X and π2 : X × Y → Y be projections onto its first 
and second factors. These maps are continuous.. 
For, π−1 

1 (U) = U × Y and π−1 

2 (V ) = X × V . 
If U and V are open, these sets are open. 

Since f : A → X × Y, π1 : X × Y → X and π2 : X × Y → Y , for every a ∈ A. 

Since f1 : A → X and f2 : A → Y 
f1(a) = π1(f(a)) and f2(a) = π2(f(a)) 
If the function f is continuous, then f1 and f2 are composites of continuous functions, 
f1 and f2 are continuous. 
Conversely, suppose f1 and f2 are continuous. Then f−1 

1 (U) is open in A and 
f−1 

2 (V ) is open in A. 

a ∈ f−1 

1 (U) ∩ f−1 

2 (V ) 

Also we have U × V be the basis element for the topology on X × Y then 

f(a) ∈ U × V 

⇒ a ∈ f−1(U × V ) 
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⇒ f−1 

1 (U) ∩ f−1 

2 (V ) ⊂ f−1(U × V ) 

Also if a ∈ f−1(U × V ) ⇒ f(a) ∈ U × V 

⇒ (f1(a), f2(a)) ∈ U × V 

⇒ f1(a) ∈ U, f2(a) ∈ V 

⇒ a ∈ f−1(U), a ∈ f−1 

2 (V ) 

f−1(U × V ) ⊂ f−1 

1 (U) ∩ f−1 

2 (V ) 

f−1(U × V ) = f−1 

1 (U) ∩ f−1 

2 (V ) 
Since f−1 

1 (U) and f−1 

2 (V ) is open in A. 
Then f−1 

1 (U) ∩ f−1 

2 (V ) is open in A. 

Then f−1(U × V ) is open in A. 
Therefore, f is continuous.  

 
0.8 The Product Topology 
 
Definition 0.8.1. Let J be an index set. Given a set X, we define J-tuple of 

elements of X to be a function x : J → X. If α is an element of J, we often 
denote the value of x at α by xα rather than x(α); we call it the αth coordinate 
of x. And we often denote the function x itself by the symbol 

(xα)α ∈ J, 
which is as close as we can come to a tuple notation for an arbitrary index set J. 
We denote the set of all J-tuples of elements of X by XJ . 

Definition 0.8.2. Let {Aα}α∈J be an indexed family of sets; let X = Sα∈J Aα. 
The cartesian product of this indexed family, denoted by 
Qα∈J 
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Aα, 

is defined to be the set of all J-tuples (xα)α∈J of elements of X such that xα ∈ Aα 

for each α ∈ J. That is, it is the set of all functions 

x : J → S α∈J 

Aα 

such that x(α) ∈ Aα for each α ∈ J. 

Definition 0.8.3. Let {Xα}α∈J be an indexed family of topological spaces. Let 
us take as a basis for a topology on the product space 
Qα∈J 

Xα, 
the collection of all sets of the form 
Qα∈J 

Uα, 

where Uα is open in Xα, for each α ∈ J. The topology generated by this basis is 
called the box topology. 
Definition 0.8.4. Let 
πβ : Qα∈J 

Xα → Xβ 

be mapping is defined by 
πβ((xα)α∈J ) = xβ; 
is called the projection mapping associated with the index β. 

Definition 0.8.5. Let Sβ denote the collection 

Sβ = {π−1 

β (Uβ)|Uβ open in Xβ}, 

and let S denote the union of these collections, 

S = S β∈J 

Sβ. 

The topology generated by the subbasis S is called the product topology. In this 
topology Qα∈J 

Xα is called a product space. 
Theorem 0.8.6. (Comparison of the box and product topologies). The box topology 
on QXα has as basis all sets of the form QUα, where Uα is open in Xα for 
each α. The product topology on QXα has as basis all sets of the form QUα, 
where Uα is open in Xα for each α and Uα equals Xα except for finitely many 
values of α. 
Proof. By definition of box topology, the basis for box topology on QXα is 

Bb = {QUα|Uα is open in Xα}. 
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By definition of product topology the basis for the topology on QXα is Bp then 

Bp is the collection of all finite intersection of elements of S where S = S β∈J 

Sβ 

and S = {π−1 

β (Uβ)|Uβ is open in Xβ}. 
Case1: 

We take finite intersection of elements of Sβ. 
Let π−1 

β (Uβ), π−1 

β (Vβ), π−1 

β (Wβ) ∈ Sβ. 
Let B = π−1 

β (Uβ) ∩ π−1 

β (Vβ) ∩ π−1 

β (Wβ) 
=π−1 

β (Uβ ∩ Vβ ∩Wβ) ∈ Sβ ⊂ Bp 

=π−1 

β (U′ 

β__________) where U′ 

β = Uβ ∩ Vβ ∩Wβ 

B = Qα∈J 

U′ 

α where U′ 

α is open in Xα, for α = α1, α2, · · · , αn and U′ 

α = Xα for 

α 6= α1, α2, · · · , αn. 
Case 2: 

We take intersection of elements from different Sβ’s. 
Let B′ = π−1 

β (Uβ1) ∩ π−1 

β (Uβ2) ∩ · · · π−1 

β (Uβn) 
B′ = π−1 

β (Uβ1 ∩ Uβ2 ∩ · · · ∩ Uβn) 

Let x = (xα)α∈J ∈ B′ 
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Then x = (xα)α∈J ∈ B′ ⇔ (xα)α∈J ∈ π−1 

β (Uβ1) ∩ · · · ∩ π−1 

β (Uβn) 

⇔ (xα)α∈J ∈ · · ·Uβ1 × · · · × Uβ2 × · · · × Uβn × · · · 

⇔ xα ∈ Uα for α = β1, β2, · · · , βn and xα ∈ Xα for α 6= β1, β2, · · · , βn 

⇔ (xα) ∈ Qα∈J 

Uα where Uα is open in Xα, for α = β1, β2, · · · , βn and Uα = Xα for 

α 6= β1, β2, · · · , βn 

B′ = Qα∈J 

Uα where Uα is open in Xα. 
Hence in both cases we get every basis element of the product topology in QXα 

is of the form QUα where Uα is open in Xα and Uα = Xα except for finitely 
many values of α. 

Clearly the basis Bp ⊂ Bb 

Therefore, the box topology is finer than the product topology.  
Theorem 0.8.7. Suppose the topology on each space Xα is given by a basis Bα. 
The collection of all sets of the form 
Qα∈J 

Bα, 

where Bα ∈ Bα for each α, will serve as a basis for the box topology on Qα∈J 

Xα. 

The collection of all sets of the same form, where Bα ∈ Bα for finitely many 
indices α and Bα = Xα for all the remaining indices, will serve as a basis for the 
product topology Qα∈J 

Xα. 

Proof. Let l = {Qα∈J 

Bα ∈ Bα,Bα is a basis for Xα} for each α. 
Bα is a collection of open sets in Xα, for every α. 
Qα∈J 

Uα is open in Qα∈J 

Xα. 
Therefore l is a collection of open sets in QXα. 
To prove l is a basis for the box topology in Qα∈J 

Xα. 

Now, x = (xα)α∈J ∈ Qα∈J 

Xα. 
Let U be an open set in QXα containing x. 
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Now U is an open set in the box topology in QXα, x ∈ U, there exists a basis 
element Qα∈J 

Uα such that x ∈ Qα∈J 

Uα ⊂ U ⇒ xα ∈ Uα for each α. 

Now xα ∈ Uα and Uα is open in Xα and Bα is a basis for Xα, there exists Bα ∈ Bα 

such that xα ∈ Bα ⊂ Uα for each α. 

Then (xα)α∈J ∈ Qα∈J 

Bα ⊂ Qα∈J 

Uα ⊂ U. 

ie, x ∈ Qα∈J 

Bα ⊂ U 

For every x ∈ QXα and any open set U containing x, there exists Qα∈J 

Bα in l 

such that x ∈ Qα∈J 

Bα ⊂ U. 
By 0.2.3, l is a basis for the box topology on the product space Qα∈J 

Xα. 

Let l′ = {Qα∈J 

Bα|Bα, for finitely many indices and Bα = Xα for the remaining 

indices} 
To prove that l′ is a basis for the product topology on Qα∈J 

Xα. 

Let x = (xα) ∈ Qα∈J 

Xα. 
Let V be an open set in Qα∈J 

Xα containing x, there exists a basis element Qα∈J 

Uα 

for the product topology in Qα∈J 

Xα such that x ∈ Qα∈J 

Uα ⊂ V , where Uα is open 

in Xα for α = α1, α2, · · · , αn and Uα = Xα for α 6= α1, α2, · · · , αn. 

Now Uαi is open in Xαi and xαi ∈ Uαi then there exists Bαi ∈ Bαi such that 

xαi ∈ Bαi ⊂ Uαi 

Define Qα∈J 
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Bα where Bα ∈ Bα for α = α1, α2, · · · , αn. 

Bα = Xα for α 6= α1, α2, · · · , αn 

Then clearly Qα∈J 

Bα ∈ l′ and 

x = (xα)α∈J ∈ Bα ⊂ Qα∈J 

Uα ⊂ V for all x ∈ Qα∈J 

Xα, there exists Qα∈J 

Bα ∈ l′ such 

that x ∈ Qα∈J 

Bα ⊂ V . 
By 0.2.3, l′ is a basis for the product topology in QXα.  

Theorem 0.8.8. Let Aα be a subspace of Xα, for each α ∈ J. Then QAα is a 
subspace of QXα if both products are given the box topology, or if both products 
are given the product topology. 

Proof. By 0.8.7, QBα is the basis for the subspace QAα(since Aα ⊂ Xα). 

Therefore, QAα ⊂ QXα. 
Theorem 0.8.9. If each space Xα is a Hausdorff space, then QXα is a Hausdorff 
space in both the box and product topologies. 
Proof. Write 0.8.6. 
Since Xα is Hausdorff, then there are distinct neighborhoods in Xα. 
Their product also containing disjoint neighborhoods. 
Therefore, QXα is Hausdorff. 2 

Theorem 0.8.10. Let {Xα} be an indexed family of spaces; let Aα ⊂ Xα for 
each α. If QXα is given either the product or the box topology, then 
QAα = QAα. 

Proof. Let (xα) ∈ QAα. 

To show that (xα) ∈ QAα. 
Let U = QUα be a basis elements for box or product topology that contains x. 

Since x = (xα) ∈ Aα, we can choose a point yα ∈ Uα ∩ Aα. 

Then y = (yα) ∈ U and QAα. 

Since U is arbitrary, (xα) ∈ QAα. 

Therefore, QAα ⊆ QAα. 

Conversely, suppose (xα) ∈ QAα. 

To show that (xα) ∈ QAα. 

Let Vβ ∈ Xβ containing xβ. 
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By definition of product topology, since π−1 

β (Vβ) is open in QXα in either topology, 

xβ ∈ Vβ ⊂ Xβ. 
Then π−1 

β (Vβ) is open in QXα. 

Since Aα ⊂ Xα, yα ∈ QAα. 

Now yβ ∈ Vβ ∩ Aβ 

Then xβ ∈ Aβ 

⇒ (xβ) ∈ QAα 

⇒ QAα ⊆ QAα 

Therefore, QAα = QAα. 
Theorem 0.8.11. Let f : Qα∈J 

Xα be given by the equation 
f(a) = (fα(a))α∈J , 

where fα : A → Xα for each α. Let QXα have the product topology. Then the 
fnction f is continuous if and only if each function fα is continuous. 

Proof. Let f : A → Qα∈J 

Xα be given by f(a) = (fα(a))α∈J where fα : A → Xα. 
Let QXα have the product topology. 
Now let πβ be the projection of the product onto its βth factor. 
ie, πβ : Qα∈J 

Xα → Xβ. 
Therefore, the function πβ is continuous. 
For, if Uβ is open in Xβ, the set π−1 

β (Uβ) is a subbasis element for the product 
topology on Xα. 

Now suppose f : A → Qα∈J 

Xα is continuous. 
Since πβ and f are continuous, the composite of these two maps, πβ ◦ f is continuous. 

πβ ◦ f = fβ where fβ : A → Xβ is continuous. 
Therefore, fβ is continuous. 
Conversely, suppose each function fα is continuous. 

To prove f : A → QXα is continuous. 
π−1 

β (Uβ) is a subbasis element for the product topology on QXα, where Uβ is 
open in Xβ. 
f−1(π−1 
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β (Uβ)) = (πβ ◦ f)−1(Uβ) = f−1 

β (Uβ) 

Since fβ : A → Xβ is continuous, f−1 

β (Uβ) is open in A. 
f−1(π−1 

β (Uβ)) is open in A. 
Therefore, f is continuous. 
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                                                UNIT-IV 
 
0.10 Connected spaces 
 
Definition 0.10.1. Let X be a topological space. A separation of X is a pair 
(u, v) of disjoint non empty open subsets of X whose union is X. 
Definition 0.10.2. The space X is said to be connected if there dose not exists 
a separation of X. 
Remark 0.10.3. If X is connected, then any space homomorphic to X is connected. 
Theorem 0.10.4. A space X is connected iff the only subsets of X that are both 
open and closed are the empty set and X itself. 
Proof. First assume X is connected. 
Claim : The only subsets of X that are both open and closed are the empty set 
and X itself. 
For, suppose A is a nonempty proper subset of X. That is both open and closed 
in X. 
We have X − A is nonempty. If we take A is closed in X. Then X − A is open. 
Therefore we have two nonempty disjoint open sets A and X −A such that their 
union is X. 
That is A and X − A forms a separation of X. 

⇒ X is not conncted. 
This contradication asserts our claim. 
Conversely, assume the only subsets of X that are both open and closed are 
empty and X itself. 
Claim : X is connected. 
For, if X is not connected, there is a separation of X. 
Let U and V forms the separation. Therefore U is nonempty. 

U is open ⇒ X − U is closed in X. 

⇒ V is closed in X. 

Also, V is open ⇒ X − V is closed in X. 

⇒ U is closed in X. 
Thus we have U is a proper subset of X. That is both open and closed. 
This is a contradication. 
Therefore X is connected.  
Lemma 0.10.5. If Y is a subspace of X, a separation of Y is a pair of disjoint 
nonempty sets A and B whose union is Y , neither of which contains a limit point 
of the other. The space Y connected if there exists no separation of Y . 
Proof. Let Y be a subspace of X. 
To prove separation of Y iff A and B are two nonempty disjoint sets such that 
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A ∪ B = Y, A ∩ B = A ∩ B = ∅. 
First assume that there exists a separation of Y . Then there exists disjoint 

nonempty open subsets A and B such that A ∪ B = Y . 

It is enough to prove A ∩ B = ∅ and A ∩ B = ∅. 
Then A is both open and closed in Y . 

The closure of A in Y is A ∩ Y where A denote the closure of A in Y. 

Since Anis closed in X. A = A ∩ Y where A is the closure of A in X. To say the 

same thing A ∩B = ∅. Since A is the union of A and its limit points, B contains 
no limit points of A. 
Similarly, we can show that A conatins no limit points of B. 

Conversely, assume A and B are two nonempty disjoint sets such that A∩B = 

Y, A ∩ B = A ∩ B = ∅. 

Claim :A ∩ Y = A. 

We have A is contained A and A ⊂ Y . 

That is A ⊂ A and A ⊂ Y . 

Therefore A ⊂ A ⊂ Y——————–(1) 

Now, let x ∈ A ⊂ Y . Then x ∈ A and x ∈ Y . 

Therefore, x /∈ B and x ∈ Y . 

⇒ x ∈ A (since Y = A ∪ B). 

Therefore, A ∩ Y ⊂ A ———————-(2). 

From (1) and (2) we get, A = A ∩ Y . 

Similarlly, we can prove B ∩ Y = B. 
Now, A is closed in X. 

⇒ A ∩ Y is closed in Y . 

⇒ A is closed in Y . 
Similarlly, B is closed in Y. 
Now, B = Y − A is open in Y. 
Therefore, B is open in Y. 
Also A = Y − B. 
Therefore, A is open in Y. 

Thus A and B are two nonempty disjoint open sets in Y with Y = A ∪ B. 
Thus there exists a separation of Y.  
Lemma 0.10.6. If the sets C and D form a separation of X and if Y is connected 
subspace of X, then Y lies entirely with in either C or D. 
Proof. Let sets C and D form a separation of X. 
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Therefore, X = C ∪ D where C and D are nonempty disjoint open sets in X. 
Let Y be a connceted subspace of X. 
To prove Y lies entirely with in either C or D. 

Since C and D are open in X, the sets C ∩ Y and D ∩ Y are open in Y. 

Also, Y = Y ∩ X 

= Y ∩ (C ∪ D) 

= (Y ∩ C) ∪ (Y ∩ D). 

Now, (Y ∩ C) ∩ (Y ∩ D) = Y ∩ (C ∩ D) 

= Y ∩ ∅ 
= ∅ 
Therefore, these two sets are disjoint and their union is Y. 

If C ∩ Y and D ∩ Y are both nonempty. 
Then they would constitute a separation of Y. Since Y is connceted, the only 

posibility is Y ∩ C = ∅ or Y ∩ D = ∅. Therefore, Y ⊂ C or Y ⊂ D. Thatis, Y is 
entirely either in C or in D.  
Example 0.10.7. Let X denote a two points space in the indiscrete topology. 
Obviously there is no separation of X, so X is connected. 

Example 0.10.8. Let Y denote the subspace [−1, 0)∪(0, 1] of the real line R each 
of the sets [−1, 0) and (0, 1] is nonempty and open in Y. They form a separation 
of Y. 
Example 0.10.9. Let X be the subspace [−1, 1] of the real line. The sets [−1, 0) 
and (0, 1] are disjoint and nonempty, but they does not form the separation of X. 
Because the first set is not open in X. 
Example 0.10.10. The rationals Q are not connected. 
Lemma 0.10.11. The union of a collection of connected subspaces of X that have 
a point in common is connected. 

Proof. Let {Aα}α∈J be a collection of connected subspaces of X that have a 

common point. Let p ∈ Aα for each α be the common point. To prove SAα is 
connected. Let Y = SAα. 
Suppose Y is not connected. Then there is a separation of Y. That is there exixt 

C and D are two nonempty disjoint open sets in Y such that C ∪ D = Y . 

We have p ∈ Y , therefore p ∈ C or p ∈ D. 

For, definteness let p ∈ C 

Therefore, we have p ∈ Aα 

⇒ Aα ⊂ C for each α 

⇒ SAα ⊂ C 
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That is Y ⊂ C 

⇒ D is empty. 
This is a contradication to D is nonempty. Therefore, Y is connceted. Thae is 
SAα is connected.  

Theorem 0.10.12. Let A be a connected subspace of X and if A ⊂ B ⊂ A. Then 
B is also connected. 

Proof. Let A be a connected subspace of X and let A ⊂ B ⊂ A. 
To prove B is connceted. 

Suppose B is not connected. Then we can write, B = C ∪ D where C and D are 

nonempty set with C ∩ D = C ∩ D = ∅. 

We have, A ⊂ B 

⇒ A ⊂ C ∪ D. 

Since A is connceted, By a theorem, A ⊂ C or A ⊂ D. 

Assume that, A ⊂ C 

⇒ A ⊂ C 

⇒ B ⊂ C 

⇒ B ∩ D = ∅. 

But B = C ∪ D. Therefore, D = ∅. 
Which is a contradication to D is a nonempty set. Therefore, our assumtion is 
wrong. Therefore, B is connected.  
Theorem 0.10.13. The image of a connected space under a continuous map is 
connected. 

Proof. Let f : X → Y be a continuous map. Given X is connected. 
To prove f(X) is connected. 

Suppose f(X) is not connected. Then we can write, f(X) = A ∪ B where A and 
B are nonempty disjoint open set in f(x). 

Let g : X → f(X) with g(x) = f(x), ∀x ∈ X. Then g is onto and continuous. 
Now, X = g−1(f(x)) 

= g−1(A ∪ B) 

= g−1(A) ∪ g−1(B). 
Since g is continuous and A and B are nonempty open set in g−1(A) and g−1(B) 
are open. Therefore,g−1(A) and g−1(B) are open in X. 

Thus X = g−1(A) ∪ g−1(B) where g−1(A) and g−1(B) are nonempty open set 

with g−1(A) ∩ g−1(B) = ∅. 
Therefore, X is not connected. 
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Which is a contradication to X is connected. Therefore, our assumption is wrong. 
Therefore, f(x) is connceted.  
Theorem 0.10.14. A finite cartesian product of connected space is connected. 
Proof. Let X1,X2, . . . ,Xn be connected spaces. 

To prove X1 × X2 × . . . × Xn is connected. 
First we prove product of two connected spaces X is connected. 

Choose a base point a × b in the product X × Y . Note that, the horizontal slice 

X × b is connected being homeomorphic with X and each vertical slice X × Y is 
connected being homeomorphic with Y. 

For each x ∈ X, define T-shaped space, Tx = (X × b) ∪ (x × Y ). 

We have x × b ∈ X × b and x × b ∈ x × Y . 

Therefore, x × b ∈ (x × b) ∩ (x × Y ). 

⇒ (x × b) ∩ (x × Y ) 6= ∅. 

By a theorem, x × b ∪ x × Y is connected. Therefore, Tx is connected for every 

x ∈ X. 

Claim : X × Y = Sx Tx 

Clearly, Tx ⊆ X × Y for every x ∈ X. 

Therefore, Sx∈X Tx ⊆ X × Y —————–(1). 

Now, To prove X × Y ⊆ Sx∈X Tx. 

We have, x × y ∈ X × Y 

x × Y ∈ x × Y ⊂ Tx 

x × y ∈ Tx ⊆ STx 

X × Y ⊆ Sx∈X Tx —————-(2). 

From equations (1) and (2) we get, X × Y = Sx∈X Tx. 

We have (a, b) ∈ X × b 

Therefore, (a, b) ∈ Tx ∀ x ∈ X. 

Therefore, Tx∈X Tx 6= ∅. 

Thus X × Y = Sx∈X Tx where Tx∈X Tx 6= ∅. 

By a lemma, X × Y is connected as each Tx is connected. 
Now, we prove that cross product of finite number of connected spaces is connected. 
Let X1,X2, . . . ,Xn be n-connected spaces. 

To prove X1 × X2 × . . . × Xn is connected. 

By the observation, we say that X1 × X2 is connected. Therefore, the result is 
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true for n = 2. 
Assume that the result is true for n-1. 

That is X1 × X2 × . . . × Xn−1 is connected. 
To prove the result is true for n. 

We have, X1×X2×. . .×Xn is homeomorphic with (X1×X2×. . .×Xn−1)×Xn. 

By our assumption, (X1 × X2 × . . . × Xn−1) is connected. Therefore,(X1 × X2 × 

. . . × Xn−1) × Xn is connected. 

⇒ (X1 × X2 × . . . × Xn−1) × Xn is connected.  

 
0.11 Compact spaces 
 
Definition 0.11.1. A collection A of subsets of X is said to be cover X or to be 
a covering of X if the union of elements of A is equal to X. 
Definition 0.11.2. A collection A of open subsets of X is said to be a open 
covering of X if its union of elements of A is equal to X. 
Definition 0.11.3. A space X is said to be compact if every open covering A of 
X contains a subcollection that also covers X. 
Example 0.11.4. The real line R is not connected. 

Let A = {(n, n + 2)/n ∈ Z} be a collection of open subsets of R whose union is 
R. But this collection does not have a finite subcollection that covers R. 

Example 0.11.5. Let X = {0} ∪ { 1 

n/n ∈ Z+} be a subspace of R. Then X is 

compact. Let {Uα} be an open covering of X. Therefore, X = Sα Uα. 

0 ∈ X ⇒ 0 ∈ Sα Uα 

⇒ 0 ∈ Uα for some α. 
Uα is an open set containing zero. Therefore, Uα is a neighbourhood of zero. 
Since 1 

n → 0, there exists a positive integer N such that 1 

n ∈ Uα ∀ n ≥ N. 

⇒ 1 

N , 1 

N+1 , . . . , 0 ∈ Uα. 
Now, 1, 1 

2 , . . . , 1 

N−1 are in SUα. 

Let 1 ∈ Uα1 , 1 
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2 ∈ Uα2 , . . . , 1 

N−1 ∈ UαN−1. 

Therefore, {1, 1 

2 , . . . , 1 

N−1 , 1 

N , 1 

N+1 , . . . , 0} ⊂ Uα1 ∪ Uα2 ∪ . . . ∪ UαN−1 ∪ Uα 

⇒ X ⊂ Uα1 ∪ Uα2 ∪ . . . ∪ UαN−1 ∪ Uα 

⇒ {Uα1 ,Uα2 , . . . ,UαN−1,Uα} is a finite subcollection which covers X. Therefore, 
X is compact. 

Example 0.11.6. (0, 1] is not compact. Since the open covering A = {( 1 

n, 1)/n ∈ 

Z+} contains no finite subcollection covering (0, 1] 
Example 0.11.7. (0, 1] is not compact and [0, 1] is compact. 
Definition 0.11.8. If Y is the subspace of X, a collection A of subset of X is 
said to cover Y if the union of this element contains Y. 
Lemma 0.11.9. Let Y be a subspace of X. Then Y is compact if and only if 
every covering of Y bysets open in X contains a finite subcollection covering Y. 

Proof. First assume Y is compact and let A = {Aα}α∈J is a covering of Y 
bysets open in X. 

Now, consider the collection {Aα ∩ Y }α∈J this is the covering of Y bysets open 
in Y. 

Since Aα ∩ Y is open in Y for each α. Therefore, by compactness of Y, this 

collection has a finite subcollection {Aα1 ∩ Y,Aα2 ∩ Y,Aα3 ∩ Y, . . . ,Aαn ∩ Y } that 
covers Y. 

Then {Aα1 ,Aα2 , . . . ,Aαn} is the finite subcollection of A that covers Y. 
Conversely, assume every covering of Y bysets open in X contains a finite 
subcollection covering Y. 
To prove Y is compact. 

Let A′ = {A′ 

α} be a covering of Y bysets open in X. 
For, each α choose a set Aα open in X such that A′ 

α = Aα ∩ Y . 
Y = A′ 

α1 ∪ A′ 

α2 ∪ . . . ∪ A′ 
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αi ∪ . . . 

Y = (Aα1 ∩ Y ) ∪ (Aα2 ∩ Y ) ∪ . . . ∪ (Aαi ∩ Y ) . . . 

= Y ∩ (Aα1 ∪ Aα2 ∪ . . .) 

Y ⊂ Aα1 ∪ Aα2 ∪ . . . ∪ Aαi ∪ . . .. 

The collection {Aα} is the covering of Y bysets open in X. Therefore, by 

hypothesis, some finite subcollection {Aα1 ,Aα2 , . . . ,Aαn} covers Y. 

Then {A′ 

α1 ,A′ 

α2 , . . . ,A′ 

αn} is the subcollection of A′ that covers A. Therefore, Y 
is compact.  
Theorem 0.11.10. Every closed subsets of a cmpact space is compact. 
Proof. Given X is compact. Let Y be a closed subset of a compact set X. 
To prove Y is compact. 

Let A = {Aα}α∈J be a covering of Y bysetsopen in X. 
Let us form an open covering β of Y by adjoining to A, single open set X-Y. 

Since X is compact, there exists a finite subcollection {Aα1∪Aα2∪. . .∪Aαn∪X−Y } 

of β that covers X. Therefore, X = {Aα1 ∪ Aα2 ∪ . . . ∪ Aαn ∪ X − Y }. 

Then Y ⊂ Aα1 ∪ Aα2 ∪ . . . ∪ Aαn. 

⇒ There exists a finite subcollection of A which covers Y. Therefore, by previous 
lemma, Y is compact.  
Theorem 0.11.11. Every compact subset of a hausdorff space is closed. 
Proof. Let X be a hausdorff space. Let Y be a compact space of X. 
To prove Y is closed in X. 
That is to prove X-Y is open in X. 

Let x0 ∈ X − Y 

⇒ x0 /∈ Y 

Then x0 6= y ∀ y ∈ Y . 
Now, x0 and y are two distinct points of Hausdorff space X. 
For, each point y of Y, there exists a disjoint neighbourhood Uy and Vy of x0 and 
y respectively. 

Now, the collection {Vy/y ∈ Y } is the collection of open in X and Y ⊂ Sy∈Y Vy. 

Therefore, {Vy/y ∈ Y } is the covering of Y bysets open in X. 

By lemma, there exists a finite subcollection {Vy1 , Vy2 , . . . , Vyn} that covers Y. 

That is Y ⊂ Vy1 ∪ Vy2 ∪ . . . ∪ Vyn. 
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Let V = Vy1 ∪ Vy2 ∪ . . . ∪ Vyn. Then Y ⊂ V and V is open in X. 

Let U = Uy1 ∩ Uy2 ∩ . . . ∩ Uyn. 
Therefore, U is the finite intersection of open sets containing x0. 
Therefore, U is an open sets containing x0. 

Claim: U ∩ V = ∅. 

Suppose U ∩ V 6= ∅. Then z ∈ U ∩ V 

⇒ z ∈ U and z ∈ V . 

Now, z ∈ U ⇒ z ∈ Uyi ∀ i = 1, 2, . . . , n. 

Also z ∈ V ⇒ z ∈ Vyi for some i. 

z ∈ Uyi ∩ Vyi . 

Which is a contradication to Uyi ∩ Vyi = ∅. 

Therefore, U ∩ V = ∅. Also Y ⊂ U. 

⇒ U ∩ Y = ∅ 

⇒ U ⊂ X − Y 

⇒ X − Y is open in X. 

⇒ Y is closed in X.  
Theorem 0.11.12. The image of a compact space under a continuous map is 
compact. 

Proof. Let f : X → Y be a continuous map, where X is a compact space and 
Y be a topological space. 
To prove f(X) is compact. 

Let A be a cover of f(X) bysets open in Y. Then f(X) ⊂ SA∈A A. Since f is 
continuous and A is open in Y. 

⇒ f−1(A) is open in X for every A ∈ A . 
Also, X = SA∈A f−1(A). 

Therefore, {f−1(A)/A ∈ A } is an open covering for X. 

Since X is compact, there exists a finite subcollection, {f−1(A1), f−1(A2), . . . , f−1(An)} 
that covers X. 

That is X = f−1(A1) ∪ f−1(A2) ∪ . . . ∪ f−1(An) 

⇒ f(X) ⊂ A1 ∪ A2 ∪ . . . ∪ An. 

{A1,A2, . . . ,An} is a finite subcollection of A that covers f(X). 
By a lemma, f(X) is compact.  

Theorem 0.11.13. Let f : X → Y be a bijective continuous function, if X is 
compact and Y is hausdorff, then f is a homeomorphim. 
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Proof. Let f : X → Y be a bijective continuous function. Given X is compact 
and Y is hausdorff. 
To prove f is a homeomorphic. 
It is enough to prove f−1 is continuous. 
That is to prove that (f−1)−1(A) is closed in Y, for every closed set A in X. 
Thatis, to prove f(A) is closed in Y for every closed set A in X. 

Let A ⊂ X be closed in X. 
Now, A being closed subset of the compact set X, A is compact. 
Now, f(A) being a continuous image of a compact set A, f(A) is compact. 
Again, f(A) being a compact subset of a hausdorff space Y. 
Therefore, f(A) is closed. 
Therefore, f−1 is continuous. 
Therefore, f is a homeomorphism. 
Theorem 0.11.14. The product of finitely many compact space is compact. 
Proof. Let X1,X2, . . . ,Xn be compact spaces. 

To prove X1 × X2 × . . . × Xn is compact. 
First we shall prove that the product of two compact space is compact. 
Then the theorem follows by induction for any finite product. 
Before proving this theorem, let us prove the Tube lemma. Consider the product 

space X × Y where Y is compact. If N is an open set of X × Y containing the 

slice x0 ×Y of X ×Y , then N contains some tube W ×Y about x0 ×y where W 
is a neigbourhood of x0in X. 
We prove the following, there is a neighbourhood W of x0 in X such that 

W × Y ⊂ N. 

W × Y is often called a tube about x0 × Y . 

First let us cover x0 × Y by basis elements U × V (for the topology of X × Y 
lieing in N). 

The space x0 × Y is compact being homeomorphic to Y. 

We can cover x0×Y by finitely many such basis element U1×V1,U2×V2, . . . ,Un× 
Vn. 

We assume that each basis element Ui × Vi intersects x0 × Y . 
Since otherwise the basis element would be super fluous we can discard it forms 

the finite collection and still the covering of x0 × Y . 

Define W = U1 ∩ U2 ∩ . . . ∩ Un. 

Then the set W is open and it contains x0 because each Ui×Vi intersects x0×Y . 

we assume that the sets Ui ×Vi which were choose to cover x0 ×Y actually cover 

the tube W × Y . 
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For, let X × y ∈ W × Y . 

Consider the point x0 × y of the slice x0 × Y , having the same y-coordinate at 
this point. 

Now, x0 × y ∈ Ui × Vi for some i. 

So that y ∈ Vi. 

But x ∈ Uj for all j. 

We have x × y ∈ Ui × Vi. Therefore, W × Y ⊂ N. Hence the lemma. 
Proof of the main theorem: 
Let X and Y be compact space. 

To prove X × Y is compact. 

Let A be an open covering of X × Y . 

Given x0 ∈ X, the slice x0 × Y is compact and therefore it can be covered by 
finitely many elements A1,A2, . . . ,Am of A . 

Their union N = A1 ∪ A2 ∪ . . . ∪ Am is an open set containing x0 × Y . 

By above tube lemma, the open set N contains a tube W × Y about x0 × Y , 
where W is open in X. 

Then W × Y is covered by finitely many elements A1,A2, . . . ,Am of A . 

Thus for each x ∈ X, we can choose a neigbourhood Wx of X such that the tube 

Wx × Y can be covered by finitely many elements of A . 

Since X is compact. There exists a finite subcollection {W1,W2, . . . ,Wk} which 
covers X. 

Therefore, theunion of the tubes W1×Y,W2×Y, . . . ,Wk ×Y covers all of X ×Y . 
Since each may be covered by finitely many elements of A . 

Hence X × Y has a finite subcover. Thus X × Y is compact. 
By induction, it follows that X1,X2, . . . ,Xn are compact spaces then their product 

X1 × X2 × . . . × Xn is compact. 
Definition 0.11.15. A collection C of subsets of X is said to satisfy the finite 

intersection properly if for every finite subclooection {C1,C2, . . . ,Cn} of C , the 

intersection C1 ∩ C2 ∩ . . . ∩ Cn is nonempty. 
Theorem 0.11.16. Let X be a tropological space. Then X is compact if and only 
if for every collection C of closed sets in X having the finite intersection property, 
the intersection Tc∈C C of all the elements of C is nonempty. 
Proof. Suppose X is compact. 
Let C be a collection of closed sets in X satisfiying the finite intersection condition. 

To prove TC∈C C 6= ∅. 
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If not assume,Tc∈C C = ∅. 
Then X − Tc∈C C = X − ∅. 

Since C is closed for all C ∈ C , X- C is open for all C ∈ C . Therefore,{X−C/c ∈ 

C } is a collection of open subsets of X and X = TC∈C (X − C). 

Therefore, {X −C/C ∈ } is an open cover for X. Since X is compact, there exists 

a finite subcollection, {X − C1,X − C2, . . . ,X − Cn} which covers X. 

Therefore, X = (X − C1) ∪ (X − C2) ∪ . . . ∪ (X − Cn) 

⇒ X = X − (C1 ∩ C2 ∩ . . . ∩ Cn) 

⇒ C1 ∩ C2 ∩ . . . ∩ Cn = ∅. 

Which is a contradication to C satisfies the finite intersection condition, TC∈C C 6= 
∅. 
Conversely, suppose that for every collection C of closed sets in X having 
the finite intersection property, the intersection TC∈C C of all elements of C is 
nonempty. 
To prove X is compact. 
Suppose X is not compact. 
Then there exists an open covering A for X which contains no finite subcovering. 
Since A is an open covering for X. 
X = SA∈A A. Then X − X = X − SA∈A A. 
That is ∅ = TA∈A (X − A) ————-(1) 

Now, {X − A/A ∈ A } is a collection of closed sets in X. 

Let {X − A1,X − A2, . . . ,X − An} be a subcollection of {X − A/A ∈ A }. 

Then (X − A1) ∩ (X − A2) ∩ . . . ∩ (X − An) = X − (A1 ∪ A2 ∪ . . . ∪ An) 6= ∅. 

Therefore, {X − A/A ∈ A } is a collection of closed subsets of X satisfying the 
finite intersection condition and by (1) TA∈A (X − A) = ∅. 
Which is a contradication. 
Therefore, our assumption is wrong. 
Hence X is compact.  
 
 
 
 
 
 



64 
 

 
 
 
 
 
 
 
 



65 
 

 
 
 
 
 
 
 



66 
 

 

 
 
 
 



67 
 

 
 

 
 
 
 
 



68 
 

 
 
 
 

 
 
 



69 
 

 
 

 



70 
 



71 
 

 

 
 
 
 
 



72 
 

 

 



73 
 

 
 

 
 



74 
 

 

 
 
 



75 
 

 
  

 
 
 



76 
 

 
 

 



77 
 


